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It is shown that spatially growing waves with complex wavenumber and real 
frequency can exist in a baroclinic flow and that these waves are substantially 
different from the more commonly studied temporally growing ones. They are 
bounded by a low wavenumber cut-off which separates them from the temporally 
growing waves. Their amplitude and phase change most rapidly near their 
steering level and are almost depth independent away from it. Most of the energy 
conversion from mean flow to the waves occurs at this level. It issuggested that 
these motions may be forced by steady disturbances such as bottom relief. 

The theory is compared with recent observations of strong small-scale motions 
in a region of rough topography of MODE and in the vicinity of the Gulf Stream. 
The vertical structure can be well matched with the theory but the complex 
wavenumber appears to be a factor of 2-3 greater than that predicted. 

1. Introduction 
It was first demonstrated by Charney (1947) and Eady (1949) that the poten- 

tial energy stored in the general circulation of the atmosphere and oceans could 
be transferred into smaller-scale fluctuations through a process that has come to 
be known as ' baroclinic instability '. Since this pioneering work, much has been 
learned about the dependence of the fluctuation properties on various para- 
meters. Most recently, Gill, Green & Simmons (1974) have carefully analysed 
situations relevant to  oceanography. 

The main thrust of these studies has been to assume that the basic flow is 
horizontally uniform and that the perturbations have separable vertical depend- 
ence and wavelike lateral and temporal behaviour. Application of suitable bound- 
ary conditions at the surface and bottom gives rise to a vertical eigenvalue 
problem for the complex phase speed c as a function of the wavenumber k. 

Choosing k to be real one searches for roots for which ci > 0 so that an exponen- 
tial growth rate of kcd results. These waves are, therefore, unstable. In  general, 
however, c is an analytic function of the c m p l e x  wavenumber k. Charney & 
Stern (1962) and Lin (1955) have pointed out the close analogy between stability 
problems for baroclinic shear flow and the more extensively analysed homogen- 
eous non-rotating shear flow. In  the latter, it  has been recognized (Watson 1962; 
Gaster 1962, 1965a, b)  that the complementary situation of complex k and real 
frequency w = kc is more applicable to laboratory demonstrations of instability. 
Here, typically, a disturbance is introduced using some kind of vibrating wave- 
maker with real frequency and instabilities with spatial growth are observed. 
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The analyses with real wavenumber are clearly of value and would seem, in- 
tuitively, to apply to the spontaneous instability of a baroclinic current owing to, 
say, an initial disturbance with real wdvenumber. However, consider the 
following situation. A wave maker sits on the bottom of the ocean vibrating with 
real frequency w .  Clearly this will force waves with a similar real frequency and 
these will propagate in the direction of their group velocity. If the eigenvalue 
problem (alternatively the dispersion relation c ( k ) )  permits a negative imaginary 
part for k (and the group velocity is positive), these waves will grow in their 
direction of propagation. As the wave-maker frequency tends to zero we approach 
the disturbance that would be produced by a stationary object such as bottom 
topography. This argument is similar in vein to Lighthill’s (1967) work on 
travelling forcing effects. In  $ 2 we shall outline the theoretical concepts and show 
that spatially growing waves are possible, although we shall not solve the full 
problem outlined above. 

In  the case of homogeneous shear flow, Gaster (l962,1965a, 6 )  has shown that 
the transformation from spatially growing waves with a wavenumber of given 
real part to temporally growing waves with the same wavenumber is particu- 
larly simple under certain circumstances and just involves the group velocity. 
The main requirement is that the growth rate is small. However, the baroclinic 
situation is decidedly different. M7e find in $ 3  that spatial and temporal waves 
are separated in wavenumber with short waves being spatially unstable and long 
waves being temporally unstable. A neutral wave separates the two cases. We 
also display modal amplitudes as functions of depth and show that these are 
substantially different for the two cases. 

This study is carried out for a particularly simple case in which the basic flow 
is the first baroclinic mode. Two kinds of stratification are considered: a uniform 
and an exponential function of depth. The top and bottom boundaries are taken 
to be rigid and horizontal and the rotation rate to be uniform. This implies that 
the top and bottom surfaces are isopycnals and vortex stretching takes place in 
the interior because the isopycnal slope is a function of depth. 

In  $4 we present, briefly, observational work by Tom Sanford and John 
Swallow from the MODE experiment that originally inspired this investigation. 
We also show some measurements by Peter Saunders and Jim Luyten from the 
Gulf Stream which appear to support application of this work to the real world. 

2. Fundamentals 
If we define u(x, t )  = (u, o, w), p(x, t )  and p(x, t ) ,  functions of position 

x = (x, y, z )  and time t ,  as small amplitude disturbances in velocity, pressure and 
density from the basic-state values of 5f(z) ,  P(y, z )  and p(y, z )  then the vertical 
component of relative vorticity C(x, t )  is approximately governed by the equation 

in the absence of dissipation and variation in the planetary vorticity f = 2Q sin q5,, 
(Q = earth‘s rotation rate and #o is the central latitude in the region of con- 
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sideration). We assume that the flow is slow relative to a rapidly rotating earth 
so that the motion is quasi-geostrophic and hydrostatic. Therefore 

- 
f D ( z )  = - q p * ,  0 = -p, - g p  

and fu  = -PyIPo, f v  = P,IPO> 0 = -2% -9P, (3) 

so that the vorticity 5 = v, - uy = Vi  p/po f (po is a constant reference density and 
g the acceleration of gravity). Density is conserved in the motion; with the 
Boussinesq approximation this leads to 

where N2(z )  = - (g/po) ap/az is the Brunt-VaisLla frequency. 

(1).  Doing so we obtain 
Equation (4) can be used to evaluate the stretching term on the right side of 

Upon substituting for [ and p from the hydrostatic and geostrophic relations 
( 5 )  becomes 

The factor 

is the cross-stream gradient of potential vorticity in the basic flow (inclusion of 
‘/3-effects’ for zonal currents leads simply to the addition of /3 to Q,). 

By choosing two-dimensional periodic disturbances of the form 

p(x, t )  = P(z) eik(x-ct), ( 7 )  
where F(z)  is a complex amplitude, c the complex phase speed and k the real 
wavenumber, equation (6), with appropriate boundary conditions, has been the 
starting point for numerous studies of stability of the baroclinic velocity profile 
a(z) to small disturbances. Generally one determines a dispersion relation c(k) 
for the waves and looks for roots with real k and complex c = c, +ic,. A root 
giving positive c4 indicates instability. Eady’s (1949) analysis of the stability of a 
uniform shear flow with constant stratification is a particularly simple example. 
He discovered that this profile is unstable to waves longer than a critical wave- 
length with a maximum growth rate at some intermediate value. These unstable 
waves have phase velocity equal to the vertical average of the velocity of the 
basic state and are non-dispersive. Eady also found that neutral waves can exist 
for the linear profile and that these waves have a phase velocity somewhere 
between the surface and bottom values for the basic state. The level at which the 
phase velocity exactly cancels the underlying flow velocity is now known as the 
‘steering level’. 

Green (1960) went several steps further and included /3 and velocity curvature 
in his analysis. His conclusion was that p acts to destabilize the flow at all wave- 
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lengths. Using physical arguments Bretherton (1 966) rationalized this result and 
showed that all infinitesimal waves with a steering level within the fluid must be 
unstable. As Charney & Stern (1962) and Lin (1956, chap. 7) have pointed out, 
there is a close parallel between the problems of stability of baroclinic flows and of 
parallel homogeneous shear flow. The latter has shown (Lin 1955, p. 119) that a 
necessary condition for instability is that the curvature in the basic flow changes 
sign within the fluid. For continuously varying baroclinic flows this corresponds 
to QV = p- ( f z K / N 2 ) ,  vanishing between the top and bottom boundaries. The 
analogy between the two situations is most obvious when, for the baroclinic case, 
the densityp(y, z )  is constant on the two boundaries (i.e. &(z) = 0 at z = 0, - H ) .  
Bretherton (1966) has shown how variation in p(y, z )  on the boundaries can be 
thought of as sheets of potential vorticity along the boundaries which must be 
included in (6). For reasons which will be elaborated in $53 and 4, we shall be 
interested here in the simpler situation in which 

Uz(z) = o at z = 0, - H .  ( 8) 

In  this case the only mechanism for balancing the creation of relative vorticity in 
(6) comes from cross-stream motion, which feels the variation in the slope of the 
isopycnals with depth. Green (1960, his Q 8a)  points out that in such a case it may 
be possible to have instability in a deep fluid that bears no relation to the bound- 
ary and that the wave amplitude will be a maximum near the steering level. 
McIntyre (1972) has worked out such an example as a model of the polar 
night jet. 

Pursuing the analogy with homogeneous shear flow somewhat further, it  has 
also been pointed out that stability analyses of the above type are not strictly 
applicable to laboratory simulations (Watson 1962; Gaster 1962, 1965a, b) .  Here 
one generally introduces a disturbance to the flow with a real frequency and this 
grows spatially in the direction of wave propagation. In  these situations one 
should choose k to be complex and w = kc to be real in (7). Gaster (l962,1965a, b )  
fhds that, under certain conditions, a temporally growing perturbation can be 
related to a spatially growing one with the same real part of the wavenumber 
through a group-velocity transformation. 

For the model we choose for a baroclinic flow, we find that this transformation 
does not hold: spatially growing waves are quite different in their properties. In  
fact, temporally growing waves are confined to long wavelengths while spatially 
growing ones are short with the dividing, critical wavelength corresponding to a 
neutral wave. 

We believe that these spatially growing waves may have physical relevance 
under certain circumstances. A wave maker sitting on the bottom in a baroclinic 
flow and oscillating with real frequency w will produce waves with this frequency 
which will propagate in the direction of their group velocity. Solutions to the 
dispersion relation, under certain conditions, will allow roots with an imaginary 
part of k = kT + ikg with the appropriate sign, thus indicating spatial instability. 
As the frequency of generation decreases towards zero, the phase velocity of the 
waves will also tend towards zero. In  the limit a steady situation will exist in 
which spatially growing, stationary waves exist in the ‘downstream ’ (de6ned by 
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the group velocity) direction. Although one would have to resort to an initial- 
value problem to prove this rigorously, we believe that this may be an appropriate 
framework for considering the effects of such steady disturbances as bottom 
roughness (seamounts, ridges, etc.) on the stability of baroclinic flows. Here we 
shall not solve the fulI problems of response of the fluid to a wave maker or bottom 
relief; the basic assumption is made that in the limit of long times the disturbance 
with largest amplitude will be that given by the spatially growing normal mode 
with frequency tending to zero. This is a crucial assumption and we hope to be 
able to report progress on this aspect of the problem in the future. 

Use of (7) in the vorticity equation (6) yields the vertical eigenvalue equation: 

with the boundary condition w = 0 at z = 0, - H determined from (4) and (8) to 
give 

F;=O at z=O, -H.  

If we multiply (9) by F*, subtract from the result P times the conjugate, and then 
integrate over the depth using (10) we obtain a form of the Rayleigh stability 
criterion for flows with both k and c complex: 

From (1 1) we can see that the necessary condition for temporally growing waves 
(ki = 0, c, =t= 0) is that Qy changes sign within the fluid. On the other hand spatially 
growing waves, in the limit of zero frequency (c4+ 0), satisfy the relation 

with the subscript c indicating evaluation at the steering level, where 
- 

q z )  = v, = 0. 

Neutral waves (ki = 0) are possible only if Qyc = 0, i.e. if Qy vanishes a t  the 
steering level. The sign of k4 depends upon the direction of approach of ci to zero. 

We also note that the depth-averaged or barotropic component of g(z) in (9) 
is equivalent to a negative real part for the phase velocity. In  what follows we 
shall investigate the dependence of the complex eigenvalue k on the complex 
phase velocity c by taking JoH a(z) dz = 0 

and varying c, and ci independently. Results for w + 0 can be recovered by allow- 
ing ci + 0 and taking c, equal to minus the barotropic mean flow component. 

Using the momentum equations, the density equation (4) and continuity it is 
possible to derive an energy equation in the usual way as w -+ 0. Averaging over a 
Deriod in time. this is 
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and relates changes in the perturbation energy to the energy flux in the wave 
and conversion from the store of potential energy in the basic flow. 

We shall also be interested in the direction of energy propagation in the growing 
waves. This is given by the real part of the group velocity c, = awlak. Writing 
w = ck and taking the limit of zero frequency, i t  can be shown that 

as w+O, 
1 app lac ,  
2 I aklac, 12 

Rec, = c,+-- 

where c, = Re c. 

3. Numerical results 
By numerical integration of (9) satisfying (10) at z = 0 we have determined the 

eigenvalue k for various c’s by adjusting k until the bottom boundary condition is 
satisfied. Because the equation must be dealt with numerically it is necessary to 
specify the shear-flow profile. Our interest is in looking a t  the effects of interior 
potential-vorticity gradients on the instability problem. As Bretherton (1966) 
shows, lateral density variations at the boundaries are equivalent to concentrated 
sheets of potential vorticity; if these gradients are of the appropriate sign, 
further changes in the sign of &, can be concentrated at the boundary and com- 
plicate the analysis. We shall remove these effects by restricting our profiles to 
satisfy (8) so that the density is uniform on the boundaries. A natural choice for 
such a profile is the lowest vertical mode of oscillation of the resting fluid (the 
so-called ‘fist  baroclinic mode’ is given by the lowest eigenfunction of (9) and 
(10) with Qv = 0 and F(x) = U(z ) ,  k being the eigenvalue). This choice was moti- 
vated by the observations we present in 3 4. 

Two forms of density stratification are considered: 

(i) N(z) / f  = 25.5, where o(z) = A,cosnz/H; 

(ii) N(z)lf = 112 exp (z/1800), 

where V(z)  = A,  [&(A) Jl(heZ~1800) -Jo(h)Y,(heZ’1800)], h = 3.227. 

In  both cases the bottom depth has been chosen to be H = 5500 m and the Brunt- 
Vaisala frequencies were chosen such that 

0 
NdzIH = 1 cycle per hour, f = 1125.5 cycle per hour, 

S--H 

values that are typical of the mid-latitude North Atlantic. We have taken 
0 

U ( z ) d z  = 0 
/ -H8z ( . z )dz /H = 1, LH- 

so that g(z) is normalized (this defines A ,  and A,)  and has zero integrated trans- 
port. From the form of Q2/ and - c in (9) it  can be seen that changes in the 
amplitude of D(z) are equivalent to inverse changes in c while changes in the baro- 
tropic component of u(x) are equivalent to negative changes in c,. We therefore 
consider c also to be normalized by the root-mean-square amplitude of the mean 
flow and, in the zero-frequency limit, c, to be equal to minus the depth-integrated 
transport (also normalized). 
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Contours of kr and k$ in the complex c plane are presented in figures 1 (a )  and 
( b )  for the two cases. Results are only given for ci > 0, but from the form of (9) it  
can be seen that P(z, k, c )  = P*(z; k*, c*), so that the lower half-plane mirrors the 
upper one with the only change being that ki changes sign. It can also be seen 
from (9) that P(x; k, c) = P(z; - k, c),  so that for any c two solutions exist. Except 
at isolated singularities contours of kr are orthogonal to those of ki, indicating 
that k is an analytic function of c. 

FIUURE 1. Contours of the real and imaginary parts of k (km-l x lo4) in the complex c 
plane for (a) constant and ( b )  exponential Brunt-Viiisiilii frequency. The crosses indicated 
singularities where c, equals either the bottom or the surface current. 



224 N .  G. Hogg 

kr 
FIUURE 2. Temporal and spatial growth rates as a function of k,. - , constant N ;  

--- , exponential N .  
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FIUURB 3. The real part of the wavenumber kr plotted against or for spatially growing 
wavw with ot = - 0.01. Vertical lines indicate values of or for which the steering level is at 
a boundary. -, constant N ;  - - -, exponential N .  
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FIGURE 4. Modal amplitudes and phases for c, = 0 with (a)  constant and ( b )  exponential 
Brunt-Viiisiilii frequency. For (a)  the waves are purely temporally growing while for (a) 
there is a slight spatial component (see figure 1). The thin horizontal line indicates the 
steering level. 
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FIGURE 5. Modal amplitudes and phases for various c, and ci = -0.01 with (a)  constant 
and ( b )  exponential Brunt-Viiisalii frequency. Them waves are spatially growing and the 
thin horizontal lines indicate steering levels. 

The case of constant stratification is symmetric about the mid-depth, leading 
to symmetry about c, = 0. Note also that c, = 0 corresponds to k, = 0 and tem- 
porally growing waves, as in the Eady (1949) model. The temporal growth rate is 
kc, and is presented in figure 2. The quantity kc, approaches zero at two points in 
figure 1 (a ) :  as ci+ 0.52 where k N 0 and as c,+ 0 where Jc N 0.25. The latter point 
is the high wavenumber cut-off characteristic of Eady-type models without p. 

The axis c, = 0 gives rise to a regular singular point in (9) and, as was shown in 
$2, equation (12), the result obtained depends on the direction of approach (i.e. 
on whether c, --f O+ or 0-). This axis also corresponds to the case of purely spatial 
growth and we note the remarkable result that k,, is now bounded by a low wave- 
number cut-off where c, = 0. As c, increases from this point so does k, (this is 
shown in figure 3). In  fact k,+ rtr 00 as cr+ U ( 0 )  or cr+ U( - H )  when the steering 
level is at one of the boundaries. The spatial growth rate I kil increases in a similar 
fashion and this is shown in figure 2 along with the temporal growth rates. 

We arrive at the important conclusion that long waves are temporally 
15 FLM 78 
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FIGURE 6. Reynolds stresses as a function of depth for (a) constant and ( 6 )  exponential 
Brunt-VaisQii frequency. The thin horizontal lines indicate steering levels. 
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unstable while short waves are spatially unstable. There exists a critical wave- 
number for which QUC = 0 and a neutral wave can exist. 

The exponentially stratified model gives similar results except that symmetry 
about c,. = 0 disappears (see figure 1 b) .  The temporally growing waves with ki = 0 
are no longer non-dispersive and c is a function of k,. However, there remains a 
high wavenumber cut-off as is illustrated in figure 2. Similar results to case (i) are 
also obtained for the spatial growth (figure 2) and the dependence of kr on c, 
(figure 3). 

From equation (14) for the group velocity and figures 2 and 3 for the de- 
pendence of k: on c,, it  can be easily seen that the sign of Re eB is the same as the 
sign of c,. Spatially growing waves are therefore those found as ci + 0-, so that 
sgn k, = - sgn (Re cg) .  Modal amplitudes for the disturbance pressure are pre- 
sented in figure 4 for the case of temporal growth (c, = 0) and in figure 5 for spatial 
growth (ci = - 0.01). 

The constant-N model gives temporally growing waves with shape similar 
to cos 2m/H while the exponential stratification concentrates variation near the 
surface, where there exists the store of potential energy (figure 4).  The spatially 
growing modes are substantially different (figure 5 ) .  They undergo rapid changes 
in the neighbourhood of their steering level, where (9) has a singularity of the 
form F(z)  N (z-z,)log (z-2, )  for ci = 0 as z-+z,. Above and below this point 
variations are much less rapid. It is apparent that there are two height scales for 
this problem, one given by the depth of the steering level and the other given by a 
Rossby deformation scale f /Nk, .  

We have also computed the Reynolds-stress term in the energy conversion (13) 
for the spatially growing perturbations. This is presented as a function of depth 
in figure 6 for the two cases. In  general the stress reaches a maximum close to the 
steering level. When this is deep (i.e. below the depth a t  which &,(z) = 0) the 
maximum appears to be just below the steering level. Taking into account the 
signs of u ( z )  and Re cg, there seems to be a small region above the steering level in 
which energy is transferred from the perturbation field to the mean flow. This is 
more than compensated for by transfer in the opposite direction below the 
steering level. 

4. Discussion and observations 
In the Mid-Ocean Dynamics Experiment (MODE-I), effects of small-scale 

topography were studied in the field with an electromagnetic velocity profiler 
(EMVP) by Tom Sanford [see Leaman & Sanford (1975) and Sanford (1976) for a 
discussion of the instrument and other results] and with neutrally buoyant 
floats, current meters and a conductivity, temperature us. depth sensor (CTD) 
by the Institute of Oceanographic Sciences. This paper was inspired by the data 
collected by these groups; a more complete description will be given by them in 
the future. 

Figure 7 shows the region of concentrated study and the positions of pairs of 
velocity profiles. It has been shown by Leaman & Sanford (1975) that the small- 
scale vertical structure is dominated by inertial motion (period N 25-5 h). 

15-2 
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FIUURE 7. Bathymetric chart of the area in MODE-I which was intensively studied with 
velocity profiling (numbered solid dots), density measurements (dashed lines are tem- 
perature contours) and current meamrements (solid lines with arrows). 

Averaging two profiles obtained half an inertial period apart at one location is a 
crude filter. This has been done for the six pairs and, after a further smoothing 
over 50 m in the vertical, the east and north components are presented in figure 8. 
It is important to realize that this indirect method of measuring velocity senses 
only the velocity relative to an undetermined reference value which varies from 
location to location and slowly with time. 

We wish to note two striking features of these average profiles. First, to the 
west over the abyssal plain (profile 190-2), there is little structure to the east-west 
component but the north-south component is dominated by considerable shear 
in the region of the main thermocline. Profiles similar to this were obtained else- 
where over the smooth abyssal plain and seem to be a property of the low-mode 
character of the mesoscale eddy field in the area, a t  least away from the rough 
bottom region. This main thermocline shear lessens as one moves a short distance 
east (profile 191-3) and into the seamount area. 

The second feature we should like to emphasize is the appearance of a mid- 
water maximum in current speed at about 2700 dbar to the north and north-east 
of a small seamount (profiles 1 9 6 6  and 195-7). This strong current is also re- 
vealed in the neutrally buoyant ffoat tracks of John Swallow, which were taken 
at more or less the same time as the velocity profiles. Figure 7 shows float tracks 
at roughly 3000 dbar. Also shown are averaged current vectors at this level from 
moored current meters. We note the strong south-east current in the east and the 
rather small horizontal scale indicated by the floats and current meters. It 
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FIGURE 8. Velocity profiles observed at  the locations shown in figure 7. (a )  Smooth. ( b )  
Seamount. ( c )  Between seamounts. Solid lines are the average of pairs of profiles taken 
half an inertial period apart in time and further smoothed over 60 m in the vertical. The 
zero level was not meaaured and has been established by the least-squares-fit procedure. 
Dashed curves are least-squares fits to the unstable wave plus mean flow according to (18). 

appears that this current is approximately geostrophic. Also drawn on figure 7 
are 2600 dbar temperature deviations; these contours are almost parallel to the 
float tracks. 

We apparently have evidence, therefore, of a disturbance to the eddy flow in 
the region of rough topography that has relatively small vertical and horizontal 
scales. In  order to tie this in with the larger mesoscale, we present in figure 9 a 
concurrent map of the temperature field interpolated from moored instruments 
at a depth of 418 m with current vectors superimposed. Note the strong north- 
south lineations over the region of interest, which is roughly 100 km east of the 
central mooring (no. 1). This eddy pattern propagated west at  abour 3 cm/s 
(Scarlet, personal communication; Richman, Hogg & Wunsch 1976). It has been 
interpreted in terms of a superposition of two barotropic and two first baroclinic 
mode Rossby waves by McWilliams & Flier1 (1976). Sanford's EMVP profiles 
away from the rough topography are consistent with this explanation: over 95 yo 
of the baroclinic energy in the average of 5 profiles taken over 2 days a t  the central 
mooring (no. 1 in figure 9) is contained in the first baroclinic mode. We shall 
interpret the observations in the seamount area as being evidence of spatial 
instability of the MODE-I eddy. 

The low-mode character of the eddy is our principal motivation for choosing 
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Km east of central mooring 

FIGURE 9. A temperature map at  a depth of roughly 400 m with velocity vectors super- 
imposed for the time period corresponding to the other measurements. The box on the 
right is the region expanded in figure 7. 

the first baroclinic mode as the mean flow. It should be noted, however, that the 
higher-order vertical structure may be important. MeWilliams & FIierl (1976) 
have pointed out that the shear near the surface is generally stronger than that 
predicted by the first baroclinic mode (in which the shear vanishes at  horizontal 
boundaries). They further show that a surface-concentrated mean zonal current 
can modify the first baroclinic mode in the desired fashion. We also note that the 
potential-vorticity gradient Qy depends on a stratification-modified curvature in 
the basic flow: even though the profile itself might be dominated by the first 
mode, this curvature brings in a strong weighting of the higher modes and may 
not be so dominated. We have neglected a number of other known properties of 
the ‘mean’ flow, such as its slow westerly propagation and lateral variations, so 
that inclusion of higher-order vertical structure would seem to be inconsistent. 

Assuming that the profiles from the seamount area are dominated by a basic 
flow and the spatially growing disturbance, we can write the measured horizontal 
velocity um(z; x, y) as 

u,(z;x,y) = A,(x,y)+A,(x,y) ~ ( z ) + A 2 * ( x , y ) ( - P y , P ~ ) + € ( Z ; X , y ) ,  
(15) 

(16) 

where p(x ,  y,z) = PRe{lP(z)l exp[i(kx+Zy+$(z)+$)]) 
= P\P(z)I exp (- k$x-Ziy) cos (k,.z+Z,.y+ $(z )  + $), 
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FIGURE 10. An average Brunt-Vaisalii profile from MODE-I (Bryden & Millard 1973) 
with the corresponding first baroclinic mode offset by 0, = - 0.42 to give a steering level 
of about 2500 dbar. Also shown are the amplitude and phase of the spatially growing dis- 
turbance. 

with #(z)  the argument of the complex normalized amplitude P(z),  P the actual 
pressure amplitude and $ a constant phase angle. By including the y wave- 
number component I, we permit an arbitrary orientation of the plane-wave 
disturbance. A&, y) is the reference velocity in the profiles. If we now define 
amplitudes and angles according to 

then (15) can be rewritten as 
I,. = Lcosa, I+ = Lsina,  kp = lilcosp, k+ = Ksinp, (17) 

urn@; x, y) = A,(% y) + A l h  Y) U(Z) +A,@, Y) I W l  cos #(z)  

+As@, Y) IW sin#@) + +; x, y) (18) 
and 

A,(x, y) = Pexp ( - k,x- Zi y) [sin (k,. x + Ivy +a + $1, sin (k,.x+ 1,y +p+ $)I, 
A,(x, y) = Pexp ( - kix- li y) [cos ( k r x  + Z,y + a + $), cos (k,.x + Ivy +p+ $)I. 

We can see then that knowledge of A,(%, y) and A,(x, y) permits us to determine 
both the growth rate and the wavenumber. The ratios of the amplitude com- 
ponents give 

(19) 

(20) 
k, .x+l ,y+$ = tan-1 2 - a = tan-1 (z) A 2Y -p, 0 

while the sums of their squares yield 

Ic, x + zi y = log, P + 4 log, [A;, + Af,] = log, P + 4 log, [A;, +A&]. (21) 
In  order to calculate F(z)  it is necessary to know the barotropic part of U(z ) .  
From figures 4 and 5 we see that the shear is greatest in the neighbourhood of the 
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FIUURE 11, Amplitudes of the unstable wave, mean flow and residue determined from the 
least-squares procedure as a function of position. __ , basic flow; - - -, wave; . . -, 
residue. 

FIGURE 12. Phase and logarithm of the wave amplitude as a function of distance. a , 
east-component phase; - - -, north-component phase; - , r.m.8. wave amplitude. 
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steering level. From figure 8 we choose this depth to be 2500 dbars ( I  dbar w 1 m). 
An average Brunt-Vaisala profile for the MODE-I experiment has been deter- 
mined by Bryden & Millard (1973): its form after some vertical smoothing is 
shown in figure I0 along with the corresponding first baroclinic mode and the 
amplitude and phase of the spatially growing wave with ci --f 0- and appropriate 
c,. The wavenumber of the wave is k = (0.0393 + 0-0095i) km-l, giving a wave- 
length of 160 km and an e-folding length of 105 km. We shall attempt to compare 
these numbers with estimates obtained from the observations through fitting 
(19), in a least-squares sense, to the profiles and using (20) and (21). 

Each profile pair in figure 8 was decomposed according to (19) by minimizing 
the depth-integrated residual E(Z; x, y )  in a least-squares manner. Results are 
given in figures 10-12 and confirm what the eye can see. The amplitude of the 
mean flow decreases as one moves east into the seamount area while the amplitude 
of both the wave and the residual increase. We note also that (14) predicts a 
group velocity in the opposite direction to the surface flow and, therefore, to the 
north. From (14) and figures 2 and 3 we estimate the group speed to be of order 
5 cm/s or 5 km/day: large enough for the perturbation to grow and propagate a 
significant amount on the time scale characteristic of the eddy (period of about 
250 days, McWilliams & Flier1 1976). It seems plausible that the disturbance is 
actually triggered by the small bottom relief in the area (the seamounts have 
lengths of about 10 km and heights of about 700 m). 

In  figure 12 we show the variation in the arc tangents of the amplitude ratios 
according to (20). The stations lay in an almost straight line running slightly 
north of east, so that we are able to estimate the wavenumber component only 
along this line. There is, as well, an ambiguity of 2n in the definition of the angle 
so determined; this has been arbitrarily removed where there is doubt, by forcing 
the phase angle to increase towards the east. From the east-component fits we 
find that k, = 0.082 km-l (wavelengthof 76 km) while the north components give 
k, = 0.116 km-l (wavelength of 54 km). Variation of the amplitudes according to 
(21) gives a growth rate k+ = 0.021 km-1 (e-folding scale = 48 km) for the aver- 
aged east and north components. 

These estimates exceed the predicted values by a factor of more than 2. We 
note that the theoretical curves predict that the wavenumber is a strong function 
of c, for a deep steering level and an improper choice of this quantity may account 
for some of the discrepancy. However, we have made a large number of gross 
approximations and, because k has no upper bound in this model without dissipa- 
tion, i t  seems plausible that a more general form of spatial instability could 
account better for the observations. 

Peter Saunders and Jim Luyten have profiled horizontal velocity in the neigh- 
bourhood of the Gulf Stream using an acoustically tracked, negatively buoyant 
device (Saunders & Luyten 1976). Figure 13 shows two five-day average profiles, 
one in the Gulf Stream and the other just north of the Gulf Stream. Within the 
stream, flow is dominated once again by a low-order structure with strong shears 
accompanying the strong density gradient of the main thermocline. The profile 
to the north, however, is decidedly different and is strikingly similar in shape to 
the rough-topography profiles in MODE-I. Additional evidence from a current- 
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FIGURE 13. Velocity profiles (a) in and ( b )  near the Gulf Stream obtained 
by Saunders & Luyten (1976). 

meter array (Luyten 1976) indicates that the deep motions beneath the stream 
are of small scale ( c 50 km) and weak functions of depth near the bottom; both 
these features are characteristics of spatially growing modes. Although the Gulf 
Stream is a far more complicated system than that we have treated, it seems 
plausible that it may become spatially unstable after leaving the coast at Cape 
Hatteras. 

This study was stimulated by Tom Sanford’s observations: I thank him for 
continued encouragement, many discussions and permission to use his data. 
John Gould originally pointed out to me the lineations of the temperature field 
near 3000 m depth: I am grateful to him and John Swallow for permission to use 
their current meter vectors, float tracks and temperatures. Michael McIntyre 
found a crucial error in an earlier version of this paper which led me to discover 
that the waves had a complex wavenumber and were not neutral as I had first 
concluded. I am grateful, as well, to Francis Bretherton for discussions on this 
point and to the referees for comments which clarified the presentation. The 
work has been supported by the Office of Naval Research through Contract 
N00014-74-C-0262 NR 083-004 to the Woods Hole Oceanographic Institution. 
This is contribution no. 3605 of the Woods Hole Oceanographic Institution 
and contribution no. 43 of the Mid-Ocean Dynamics Experiment. 
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